Because rays that are trapped in a duct cannot leave the Earth's atmosphere, an observer within the duct cannot see the Sun or other astronomical objects in a zone of the sky, containing the ducted rays, that is centered on the astronomical horizon. Instead, this strip of sky is filled with miraged images of distant terrestrial objects, if there are any in the duct.
This horizontal “blank strip” or “forbidden zone” was pointed out by Alfred Wegener in 1918. Wegener called it a “reflecting” or “miraging” strip when he was discussing mirages, and a “blank strip” when discussing sunsets; he says:
The reflecting strip of the terrestrial mirage … becomes a blank strip in the solar image.
Because most of the atmosphere that scatters the light of the daytime sky is also above the duct, it too is hidden by Wegener's blank strip. Consequently, the strip usually looks dark at sunset, and is often mistaken for a cloud or fog-bank by observers.
Pekka's blank-strip sunset appears on his Web pages, but you have to dig down through the menus to find them. Start with “SUN involved” images, then look for image su08032 on “Sun distortion page 2”. Or go to “Solar sequence page 2” and pick sunseq15. Because the duct was of finite length, the Sun eventually appears (seen through the far end of the duct) in the blank strip as a very dim, red image.
However, ducted sunsets present complex phenomena that are not easily explained by means of ray diagrams alone. I find it more useful to look at their transfer curves to understand them. The transfer curves used to explain the sub-duct flash are particularly interesting.
Wegener offered a highly simplified treatment of ducting, though his papers are a good place to start. However, he treated the temperature profile as discontinuous; in reality, it's not only continuous, but smooth. The smooth corners in the temperature profile guarantee that there will be heights at which the ray curvature exactly matches the Earth's curvature.
At these heights, the rays orbit the Earth, and the astronomical refraction becomes nearly infinite. The infinite refraction produces infinitely-compressed (line-like) images of the Sun, and other phenomena not foreseen by Wegener. Laplace's extinction theorem means that the extinction (and atmospheric reddening) also become very large at the edges of the blank strip. The large reddening and great compression both act to suppress the visibility of green flashes in sunsets that show blank strips.
Another complication occurs when the duct is so deep that it reaches the surface of the Earth. Then the lower edge of the blank strip is occulted by the apparent horizon, destroying the normal symmetry of the strip. This situation guarantees that there are terrestrial objects (though perhaps only a sea horizon) within the duct, so a superior mirage will certainly be seen. So the classical superior mirage is an example of Wegener's blank strip; the strip is often recognizable as a dark band in mirage photographs.
Wegener called the strip ein blinder Streifen, a phrase that some people (like O'Connell) have translated literally as “blind strip”. But Wegener meant “blind” in the sense we use the word in English in phrases like a “blind hole” — i.e., one that's blocked instead of clear through: you can't see through it.
Sometimes Wegener calls the strip ein spiegelnder Streifen, which could equally well be translated as a miraging strip, or a reflecting strip, as the word spiegelnd means both “reflecting” and “miraging”. This makes sense when talking about superior mirages, but it's not useful when discussing sunsets.
I think “blank strip” conveys the idea that the strip lacks all astronomical objects. But of course it fails to indicate the strip's action in producing mirages. There doesn't really seem to be a good English term to describe the appearance and action of Wegener's strip.
Copyright © 2005 – 2009 Andrew T. Young
or the
main mirage page
or the
GF home page
or the website overview page