Transit Timings of HD 209458b

Karen I. Hutchins
San Diego State University
Master of Science in Astronomy
Thesis Defense
2006 July 24
• 1st extrasolar planet discovered in 1995
 – 51 Peg b (Mayor & Queloz 1995)
 – Discovered by radial velocity method
Extrasolar Planets

- 1st extrasolar planet discovered in 1995
 - 51 Peg b (Mayor & Queloz 1995)
 - Discovered by radial velocity method

- As of 2006 July 24, 200 extrasolar planets have been discovered (http://exoplanet.eu)
Extrasolar Planets

• 1st extrasolar planet discovered in 1995
 – 51 Peg b (Mayor & Queloz 1995)
 – Discovered by radial velocity method

• As of 2006 July 24, 200 extrasolar planets have been discovered (http://exoplanet.eu)

• So far, only gas giants have been discovered
Extrasolar Planets

• 1st extrasolar planet discovered in 1995
 – 51 Peg b (Mayor & Queloz 1995)
 – Discovered by radial velocity method

• As of 2006 July 24, 200 extrasolar planets have been discovered (http://exoplanet.eu)

• So far, only gas giants have been discovered

• Future missions will find Earth-like planets
Jupiter versus Earth

- Jupiter \rightarrow Gas Giant
- Earth \rightarrow Terrestrial Planet
Jupiter versus Earth

- Jupiter \rightarrow Gas Giant
- Earth \rightarrow Terrestrial Planet
- $M_{\text{Jupiter}} \sim 318 \text{ times } M_{\text{Earth}}$
- $R_{\text{Jupiter}} \sim 11 \text{ times } R_{\text{Earth}}$
- $\rho_{\text{Jupiter}} \sim 0.24 \text{ times } \rho_{\text{Earth}}$
Jupiter versus Earth

- Jupiter \rightarrow Gas Giant
- Earth \rightarrow Terrestrial Planet
- $M_{Jupiter} \sim 318$ times M_{Earth}
- $R_{Jupiter} \sim 11$ times R_{Earth}

\[\forall \rho_{Jupiter} ~ 0.24 \text{ times } \rho_{Earth} \]

\[\forall \rho_{Earth} \sim 5.5 \text{ g/cm}^3, \rho_{Mars} \sim 3.9 \text{ g/cm}^3, \rho_{Asteroid} \sim 3 \text{ g/cm}^3 \]

\[\forall \rho_{Jup} \sim 1.3 \text{ g/cm}^3, \rho_{Water} \sim 1.0 \text{ g/cm}^3, \rho_{Saturn} \sim 0.7 \text{ g/cm}^3 \]
Planet Detection Methods: Astrometry

- Measures changes in the position of a star over time
- Oldest method
- No success yet
- SIM PlanetQuest:
 - 9-meter baseline
 - Micro-arcsec accuracy
 - Earth-like planets
 - Scheduled launch 2015

Astrometric displacement of the Sun as it would be seen from 10 parsecs away (~33 light-years).
http://planetquest.jpl.nasa.gov/science
Planet Detection Methods: Radial Velocity

- Measures variations in the speed of a star as it orbits center of mass
- Uses spectroscopy
 - Shift of spectral lines
- Very successful!
- Drawbacks:
 - Calculate $M \sin i$, not M
 - Can’t calculate R_{planet}

http://planetquest.jpl.nasa.gov/science
Planet Detection Methods: Gravitational Microlensing

- Gravitational field of the star & planet bend and focus light rays
- Disadvantage:
 - Chance alignment
- Advantage:
 - Potential to detect Earth-like planets
- OGLE: 4 planets (one is only ~5.5 M_{Earth})

http://planetquest.jpl.nasa.gov/science
Planet Detection Methods: Transits

- The star’s light dims as the planet transits.
- Advantages:
 - Calculate M, R, and ρ!
 - Planet’s atm., T_{planet}
- Kepler mission:
 - 0.95-m space telescope
 - Monitor ~100,000 stars
 - Earth-like planets
 - Launch: ~Oct 2008

http://planetquest.jpl.nasa.gov/science
Planet Detection Methods: Direct Imaging

- Planets are $\sim 10^9 - 10^{11}$ times fainter in V-band, $\sim 10^5 - 10^6$ in IR
- 3 “potential” planets
- TPF mission:
 - V-band coronagraph
 - mid-IR interferometer
 - 150 stars, up to ~ 14 pc
 - Target habitable zones

Image taken at Cerro Paranal in Chile.

VLT-NaCo K-band
- Distance to star ~ 140 pc.
- Separation is ~ 1.4 pc $\rightarrow \sim 300,000$ AU!
- Companion is 6 mag fainter and 1–42 M_{Jup}.

20 multiple-planet systems

1 extrasolar planet with orbit larger than Jupiter

10 known transiting planets

(http://exoplanets.org/massradiiframe.html)
HD 209458

- In the constellation Pegasus
- Distance ~50 parsecs away
- B = 8.18, V = 7.645, R = 7.287, I = 6.985
- G0 V (main sequence star)
- Surface temperature ~6000 K
- Solar metallicity
- $M \sim 1.1 \, M_{\odot}$, $R \sim 1.2 \, R_{\odot}$
• 1st transiting planet discovered
 - (Charbonneau et al. 2000, Henry et al. 2000)
• M ~0.66 M\textsubscript{Jup}, R ~1.35 R\textsubscript{Jup}, ρ ~0.33 g/cm3 (Witt./05)
• Radius ~10 to 20% larger than predicted:
HD 209458b

- 1st transiting planet discovered
 - (Charbonneau et al. 2000, Henry et al. 2000)
- $M \sim 0.66 \, M_{\text{Jup}}$, $R \sim 1.35 \, R_{\text{Jup}}$, $\rho \sim 0.33 \, \text{g/cm}^3$ (Witt./05)
- Radius \sim 10 to 20% larger than predicted:
 1. Strong winds transport \sim 1% of incident stellar flux into the lower atmosphere (Guillot & Showman 2002)
HD 209458b

- 1st transiting planet discovered
 - (Charbonneau et al. 2000, Henry et al. 2000)
- $M \sim 0.66 \, M_{\text{Jup}}$, $R \sim 1.35 \, R_{\text{Jup}}$, $\rho \sim 0.33 \, \text{g/cm}^3$ (Witt./05)
- Radius ~10 to 20% larger than predicted:
 1. Strong winds transport ~1% of incident stellar flux into the lower atmosphere (Guillot & Showman 2002)
 2. Tidal heating due to ongoing circularization of an eccentric orbit (Bodenheimer et al. 2001, 2003)
HD 209458b

- 1st transiting planet discovered
 - (Charbonneau et al. 2000, Henry et al. 2000)
- $M \approx 0.66 \, M_{\text{Jup}}, \, R \approx 1.35 \, R_{\text{Jup}}, \, \rho \approx 0.33 \, \text{g/cm}^3$ (Witt./05)
- Radius ~10 to 20% larger than predicted:
 1. Strong winds transport ~1% of incident stellar flux into the lower atmosphere (Guillot & Showman 2002)
 2. Tidal heating due to ongoing circularization of an eccentric orbit (Bodenheimer et al. 2001, 2003)
 3. Obliquity tides \rightarrow precession of spin axis resonates with precession of orbital normal (Winn & Holman 2005)
Solid line: best-fit model,
$R_p = 1.27 \, R_{\text{Jup}}$, $i = 87.1^\circ$
Dashed lines: planet 10% smaller (top) and 10% larger (bottom)
Partial transit observed on 1999 November 7 with the APT. Error bar represents the predicted time of inferior conjunction from the radial velocities. Transit depth is $1.58\% \pm 0.18\%$. Figure 3 in Henry et al. 2000, ApJ, 529, L41.
Planetary Ephemeris

- Ephemeris equation: $T_C = T_0 + PE$
- T_C = time of mid-transit
- T_0 = fiducial time of mid-transit ($E = 0$)
- P = orbital period
- E = cycle number, an integer
Importance of a Precise Ephemeris \((T_C = T_0 + PE) \)

1. Inference of additional bodies through deviations in the times of mid-transit
Importance of a Precise Ephemeris ($T_C = T_0 + PE$)

1. Inference of additional bodies through deviations in the times of mid-transit
 - An Earth-mass moon around HD 209458b would alter the time of mid-transit by up to 13 sec
 - A Jupiter-mass planet orbiting at 10 AU would alter the time of mid-transit by up to 5 sec
Importance of a Precise Ephemeris \((T_C = T_0 + PE)\)

1. Inference of additional bodies through deviations in the times of mid-transit
 - An Earth-mass moon around HD 209458b would alter the time of mid-transit by up to 13 sec
 - A Jupiter-mass planet orbiting at 10 AU would alter the time of mid-transit by up to 5 sec

2. Ephemeris needs to be updated periodically due to accumulation of errors from uncertainty in P
Importance of a Precise Ephemeris ($T_C = T_0 + PE$)

1. Inference of additional bodies through deviations in the times of mid-transit
 - An Earth-mass moon around HD 209458b would alter the time of mid-transit by up to 13 sec
 - A Jupiter-mass planet orbiting at 10 AU would alter the time of mid-transit by up to 5 sec

2. Ephemeris needs to be updated periodically due to accumulation of errors from uncertainty in P
 - If period of HD 209458b (~3.5 days) was accurate to 1 sec, after 1 year from T_0 (~100 cycles), ~2 min of error have accumulated
Discrepancy Between Ephemerides of HD 209458b

• Wittenmyer et al. 2005
 - 27 light curves → ground and space-based observations

• Knutson et al. 2006
 - 8 light curves → space-based observations (STIS)
Discrepancy Between Ephemerides of HD 209458b

- Wittenmyer et al. 2005
 - 27 light curves → ground and space-based observations
- Knutson et al. 2006
 - 8 light curves → space-based observations (STIS)
- Periods differ by 0.26 seconds (17 sigma)
- T_0 differs by 91.6 seconds (12 sigma)
- Discrepancy needs to be resolved
- I calculate a revised ephemeris
Previous Observations from Wittenmyer et al. 2005

- **MLO 1-m (Wittenmyer):** 12 I-band transits
 - 2001 June through 2003 August
- **APT (Henry):** 6 B-band transits
 - 2001 October through 2004 September
Previous Observations from Wittenmyer et al. 2005

- MLO 1-m (Wittenmyer): 12 I-band transits
 - 2001 June through 2003 August
- APT (Henry): 6 B-band transits
 - 2001 October through 2004 September
- STIS (Brown): 4 R-band transits
 - 2000 April & May
- FGS (Schultz): 5 V-band transits
 - 2001 June through 2002 September
APT & MLO data were binned by a factor of 5 for clarity. Solid line is the ELC model.
New Observations

• MLO 0.6-m (Hutchins): 6 I-band transits
 – 2005 September & November
• APT (Henry): 1 B-band transit
 – 2005 November
New Observations

- **MLO 0.6-m (Hutchins):** 6 I-band transits
 - 2005 September & November
- **APT (Henry):** 1 B-band transit
 - 2005 November
- **Additional values of T_C:**
 - **STIS:** 4 values of T_C (Knutson et al. 2006)
 - 2003 May through July
 - **Spitzer:** 2 values of T_C (Richardson et al. 2006)
 - 2004 December & 2005 June
Transits Observed with the MLO 0.6-m Telescope

Reduced Chi-square values are 3.0, 2.7, and 1.9.
Transit Observed with the 0.8-m APT
Reduced Chi-square is 0.94
Tilt-correction of MLO Light Curves

- Tilt-correction process:
 1. Compute residuals (data minus model)
Tilt-correction of MLO Light Curves

- Tilt-correction process:
 1. Compute residuals (data minus model)
 2. Fit a line to the residuals
 - I modified a subroutine from Numerical Recipes called “svdfit” that uses χ^2 minimization to find the best-fit polynomial (a line in this case).
Tilt-correction of MLO Light Curves

- Tilt-correction process:
 1. Compute residuals (data minus model)
 2. Fit a line to the residuals
 - I modified a subroutine from Numerical Recipes called “svdfit” that uses χ^2 minimization to find the best-fit polynomial (a line in this case).
 3. Subtract best-fit line from the light curve
Tilt-correction of MLO Light Curves

Tilt-correction process:
1. Compute residuals (data minus model)
2. Fit a line to the residuals
 - I modified a subroutine from Numerical Recipes called “svdfit” that uses χ^2 minimization to find the best-fit polynomial (a line in this case).
3. Subtract best-fit line from the light curve
 - Light curve has now been tilt-corrected
Tilt-correction Applied

- MLO 1-m data tilt-correction:
 - 0.002 to 0.05% in rms % change (avg=0.02%)
 - Change in T_c of 5.3 to 369.0 sec (avg=111.5 s)
Tilt-correction Applied

• MLO 1-m data tilt-correction:
 – 0.002 to 0.05% in rms % change (avg=0.02%)
 – Change in T_c of 5.3 to 369.0 sec (avg=111.5 s)

• MLO 0.6-m data tilt-correction:
 – 0.005 to 0.04% in rms % change (avg=0.007%)
 – Change in T_c of 6.8 to 398.4 sec (avg=145.1 s)
Tilt-correction Applied

- MLO 1-m data tilt-correction:
 - 0.002 to 0.05% in rms % change (avg=0.02%)
 - Change in T_C of 5.3 to 369.0 sec (avg=111.5 s)

- MLO 0.6-m data tilt-correction:
 - 0.005 to 0.04% in rms % change (avg=0.007%)
 - Change in T_C of 6.8 to 398.4 sec (avg=145.1 s)

- Conclusion: Tilts can greatly affect T_C!
Transit Observed with the MLO 1-m Telescope

Before Tilt-correction Reduced Chi-square is 3.7
Transit Observed with the MLO 1-m Telescope

After Tilt-correction Reduced Chi-square is 1.4
Transit Observed with the MLO 0.6-m Telescope

Before Tilt-corrrection Reduced Chi-square is 4.9

I-band Magnitude

Residuals (mag)

Orbital Phase

HJD 2453640
Transit Observed with the MLO 0.6-m Telescope

After Tilt-correction Reduced Chi-square is 2.7
Calculating Observed Times of Mid-transit

1. Start with an initial value of T_c
Calculating Observed Times of Mid-transit

1. Start with an initial value of T_c
2. Phase-fold the data
1. Start with an initial value of T_C
2. Phase-fold the data
3. Calculate reduced χ^2 fit to ELC model
Calculating Observed Times of Mid-transit

1. Start with an initial value of T_C
2. Phase-fold the data
3. Calculate reduced χ^2 fit to ELC model
4. Shift T_C by 1×10^{-5} days (~1 second)
Calculating Observed Times of Mid-transit

1. Start with an initial value of T_C
2. Phase-fold the data
3. Calculate reduced χ^2 fit to ELC model
4. Shift T_C by 1×10^{-5} days (~1 second)
5. Repeat process for a range in T_C of 0.02 days (~30 min) above and below initial T_C
Calculating Observed Times of Mid-transit

1. Start with an initial value of T_C
2. Phase-fold the data
3. Calculate reduced χ^2 fit to ELC model
4. Shift T_C by 1×10^{-5} days (~1 second)
5. Repeat process for a range in T_C of 0.02 days (~30 min) above and below initial T_C
6. T_C that yields the best fit to the model is selected as the observed time of mid-transit
Calculation of the Best-fit T_c

$\chi^2_\nu + \left(\frac{\chi^2_\nu}{\text{NDOF}}\right)$
Calculating Predicted Times of Mid-Transit

• Use Wittenmyer et al.’s ephemeris to calculate the predicted times of mid-transit

• \(T_{\text{predicted}} = T_0 + (P \times E) \)

\[\forall \sigma_{T_{\text{predicted}}} = (\sigma_{T0}^2 + (\sigma_P^2 \times E^2))^{\frac{1}{2}} \]
O-C Diagrams

- Observed T_C minus Calculated T_C
- Trends in the O-C values:
 1. Linear trend indicates an incorrect period
 - Positive slope \rightarrow Period is too small
 - Negative slope \rightarrow Period is too big
O-C Diagrams

- Observed T_C minus Calculated T_C

- Trends in the O-C values:
 1. Linear trend indicates an incorrect period
 - Positive slope \rightarrow Period is too small
 - Negative slope \rightarrow Period is too big
 2. Parabola/Sinusoid pattern indicates a changing period
 - Changing period could be due to a 3rd body
O-C Diagram Using Ephemeris of Wittenmyer et al. (2005)
Dashed lines indicate the uncertainty in the ephemeris.
O-C Diagram Using Ephemeris of Wittenmyer et al. (2005)
O-C Diagram Using Ephemeris of Wittenmyer et al. (2005)
O-C Diagram Using Ephemeris of Wittenmyer et al. (2005)
O-C Diagram Using Ephemeris of Wittenmyer et al. (2005)
O-C Diagram Using Ephemeris of Wittenmyer et al. (2005)
O-C Diagram Using Ephemeris of Wittenmyer et al. (2005)

Reduced Chi-square is 9.5

[Graph showing O-C (seconds) against Time (HJD - 24500000) with various data points and error bars.]
Includes all of the data that Wittenmyer had.
1=Charbonneau et al. 2000
2=Mazeh et al. 2000
3=Jha et al. 2000
4=STIS (Brown et al. 2001)
5=STIS (Schultz et al. 2003)
6=Deeg et al. 2001
7=FGS & STIS (Schultz et al. 2004)
8=FGS (Schultz et al. 2003)

Cycle 0=Wittenmyer et al. 2005

O-C Diagram Using Ephemeris of Wittenmyer et al. (2005)

Reduced Chi-square is 9.5
Calculation of New Ephemeris

Time of Mid-transit (HJD - 2450000)

Cycle Number

y-intercept = T0
slope = Orbital Period
Comparison of Ephemerides

- **Wittenmyer et al. 2005:**
 - \(T_0 = 2452854.82545 \pm 1.35 \times 10^{-4} \) HJD (11.7 seconds)
 - \(P = 3.52474554 \pm 1.8 \times 10^{-7} \) days (0.016 seconds)

- **Knutson et al. 2006:**
 - \(T_0 = 2452826.628521 \pm 8.7 \times 10^{-5} \) HJD (7.5 seconds)
 - \(P = 3.52474859 \pm 3.8 \times 10^{-7} \) days (0.033 seconds)

- **My ephemeris:**
 - \(T_0 = 2452854.825942 \pm 4.5 \times 10^{-5} \) HJD (3.9 seconds)
 - \(P = 3.52474714 \pm 1.6 \times 10^{-7} \) days (0.014 seconds)
O-C Diagram Using Revised Ephemeris

Reduced Chi-square is 8.8
O-C Diagram Using Ephemeris of Wittenmyer et al. (2005)

Reduced Chi-square is 9.5

Time (HJD - 2450000)

O-C (seconds)
Conclusions

1. A tilt in a light curve greatly affects T_c
 - However, the tilts can be corrected
Conclusions

1. A tilt in a light curve greatly affects T_C
 - However, the tilts can be corrected

2. Ground-based observations are probably not precise enough to detect a 3rd body
 - However, space-based observations could
Conclusions

1. A tilt in a light curve greatly affects T_c
 - However, the tilts can be corrected
2. Ground-based observations are probably not precise enough to detect a 3rd body
 - However, space-based observations could
3. Need to revise Wittenmyer et al.’s period
 - I determine a revised ephemeris
Conclusions

1. A tilt in a light curve greatly affects T_C
 - However, the tilts can be corrected
2. Ground-based observations are probably not precise enough to detect a 3rd body
 - However, space-based observations could
3. Need to revise Wittenmyer et al.’s period
 - I determine a revised ephemeris
4. Inconsistency between the FGS & STIS data
 - Future projects could look into this
Thank you!